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Abstract —This paper describes a new finite-difference time-
domain (FD-TD) formulation which is different from the FD-TD
based on Yee’s scheme. It is shown that the new finite-difference
time-domain formulation is exactly equivalent to the symmetri-
cal condensed node model used in the transmission line matrix
(TLM) method. More specifically, the TLM method can be
exactly formulated in a finite-difference form in terms of total
field quantities. Due to a better field resolution and fulfillment
of continuity conditions, the new FD-TD formulation or its TLM
equivalent model give better convergence and accuracy than the
traditional FD-TD method presently used. This is illustrated by
numerical results pertaining to a finned waveguide.

I. INTRODUCTION

ECENTLY, time domain solutions for field prob-

lems have received growing attention. Two currently
employed techniques are the transmission-line matrix
(TLM) method [1], [2] and the finite-difference time-
domain (FD-TD) method formulated by Yee [3]. The
TLM method is physical model based on Huygens’ princi-
ple using interconnected transmission lines while FD-TD
is an approximate discrete mathematical model directly
based on Maxwell’s equations. Although they have been
developed independently, both methods have been exten-
sively applied to solve similar electromagnetic field, diffu-
sion and network problems in the time-domain [4]-[10].
The flexibility and simplicity of their basic algorithms
make them very attractive. Indeed, they can treat arbi-
trary geometries and account for realistic features that
are often neglected in theoretical analyses. Most pub-
lished work on the application of these techniques has
been devoted to the computation of specific structures,
modelling of various types of boundaries, material param-
eters, implementation of graded and conformal meshes
and the development of improved nodes.
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In spite of these successful applications, the exact rela-
tionship between the TLM and finite-difference formula-
tions has been fully explained even though some work
along these lines has been done by P. B. Johns [11], [12].
He demonstrated that the expanded 3D TLM node model
numerically corresponds to a finite-difference scheme
when they are operated in a certain way. However, there
exists no FD-TD scheme that is equivalent to the symmet-
rical TLM condensed node, developed by Johns himself,
since the six field components are not defined in the same
points in Yee’s finite-difference time-domain scheme. This
issue is addressed in this paper where a new finite-dif-
ference time-domain formulation for Maxwell’s equations
is proposed and shown to be equivalent to the TLM
condensed node algorithm when expressed in terms of
total field quantities.

II. A New TiMe-DomMaiN FINITE DIFFERENCE
ForMULATION FOR MaxweLL’s EQUATIONS

A. The Two-Dimensional Case

First consider the two-dimensional Maxwell’s equations
for transverse magnetic (TM-to-y) waves in a stationary
and sourceless medium:

E,=E,=0, H,=0, (1)
OF oH
y z
—— . — —_—, 2
ox P 2)
OE, oH. .
ey
dz # r (3)
oH, oH. oE,
St 4)
9z ox ot

where p and e are the permitivity and permeability of the
medium to be modelled.
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Following Yee’s notation [3], we denote a CarteSIan
grid of points on the x — z plane as

(i,k) = (idx,kdz) (5)
and any function of discrete space and time as
F(idx,kéz,nét)=,F(i, k) (6)

where 8=68x =050z are the space discretization units
(taken to be the same for simplicity), 8¢ is the time
increment, and i, k,n are integers.

Now, the 2-D region is discretized into a mesh shown in
Fig. 1. Unlike in Yee’s scheme [3], all the three nonzero
field components of E and H are defined at a node
located at the center of the 2D cell, while at the nodes on
the boundary contours, only the magnetic field compo-
nents tangential to the contour and the electric field
normal to the mesh area are considered (Fig. 1). As a
result, the E and H-field components are not separated
in space but are all defined at the same grid points. This
grid arrangement ensures that both the tangential E and
H field components are continuous across the interface of
two adjacent cells.

The finite-difference formulations at node (i, k) for (1)
to (4) are therefore as follows:

n+%Ey(i+%7k)_n+%Ey(i_%,k)
ox
n+1H~(i>k)_nHz(i,k)
= - 7
By (i k+3) =B (i k = 3)
6z
n+1Hx(i’k) _on(iyk)
= 8
"+%Hx(i’k +%)_n+%Hx(i7k _%)

oz

n+%Hz(l‘+%’k) n+1H (l _%
ox

K

n+1Ey(i7k) _nEv(i’k)

=+te 57 - . (9

From the above equation, the updated values of
pi 1 ESGLK), o H(i, k) and ,,  H (i, k) at the cell center
can be obtained from the values of E and H-fields at the
previous time step.

In order to get the updated values of the E and H-ficld
components at the boundary of each cell, the energy
conservation conditions, which correspond to the unitary
condition of S-parameters in circuit theory, are imposed
on the field quantities of each cell. That is, the field
components at the boundary of each cell are decomposed

2161
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Fig. 1. Grid positions for the 2D condensed TD-TD formulation.

into two sets of “local” plane waves (transmission line
modes): one is going towards the cell center and another
away from the cell center. The energy entering a cell
should be equal to the energy leaving the cell at the next
time step. As a result, one has:

n+i Y( k+ ) ZOn+%Hx(i:k+%)
=2[,E,(i,k)~ Zy ,H.(i,k)]

_[n_

petE (L k+ 3y Zg i H (i k +3)

E ik =3) = Zg o sH (i k = 3)] (10)
=2[,E,(i,k+1)+ Z, ,H,(i,k+1)]
—[n_%Ey(i,k+%)+Zo,l_%Hx(i,k+%] (11)
*n+_E (i+3,k)+Zg,  H,(i+3,k)
=2[,E,(i,k)+ Zy ,H,(i, k)]
o B bR+ Zo et (=50 (1)
watB (i3, k)= Zg i H (14 5, k)
=2[,E,(i+1,k)—Z,,H,(i+1;k)]

— [, B (i 43, k) + Zg,yHA(i+3,K)] (13)
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or,
nt { ( k+= )
=nEy(l’k)_ZOnHr(i7k)
+,1Ey(i,k+1)+ZO,,Hx(i,k+l)
~%|inf%E}'(i'k_%)_Zon_%HX(i'k
+ B (1 k+3)+ Zo o H (LK +3)] (14)
n+ ( k+ )
=[nEy(z,k+1)+ZOon(i,k+l)
‘nEy(i7k)+ZOnHv(i’k)l/ZO
~%[n Bk +3)+ 2o, ,(' k+3)
n~— ;(l )+Z0n 'H ]/ZO
(15
n+%Ey(l'+%,k)
=, E(i,k)+ Zy ,H,(i,k)+,E,(i+1,k)
-2y, H(i+1, k)
—%[n E (i3 k) + 2y o HL(i - 3.k)

~n_%Ey(z+5,k)—ZO,l_%HZ(z+5,k)] (16)
petH (i 43, k)
=[,E,(i,k)+ Zy,H (i.k)—,
+Zy, H(i+1,k)]/Z,
— 3], B (i —5.k)+ Zo, H(i= 5. k)
— B (i 3,k)+ Zy, H(i+3.k)/ Z,
(17)
where ZO=W.
B. The Three-Dimensional Case

For three-dimensional cases, Maxwell’s curl equations
in a stationary and sourceless medium in the time-domain
are

E,(i+1,k)

H \Y 18
— =-VXE

po , (18)
oE

e—=VXH. (19)
ot

In a rectangular coordinate system, (18) and (19) be-
come the following system of scalar equations:

dH, JE, JF, 5
i 9z dy (20)

dH, OE. JE,

Ay _Es 21
R T ox  az (21)
oH, OE, JE,
- = (22)
at ay dx
oE, 0H, OH,
€ = = (23)
at dy dz
E, OH, o, 2
or 9z ox (
JE, 0H, 0H,
= (25)

€t dx dy
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Fig. 2. (a) Positions of the fleld components about a unit cell of the
Yee lattice. (b) Positions of the field components about 3D cell of the
new finite-difference time-domain formulation.

Just like in the 2D case, we denote a Cartesian grid of
points as

(i,j,k)=(idx,jdy, kdz) (26)
and any function of discrete space and time as
F(idx,joy,kdz,nét)y=,F(i,j, k). (27)

d=06x=08y =290z are the space discretization units
(taken to be the same for simplicity), 6¢ is the time
increment, and §,j, k,n are integers.

In contrast to Yee’s scheme [3] (see Fig. 2(a)), the six
field components of E and H are defined at a node
located at the center of the 3D cell, while at the nodes on
the boundary surface of the 3D cell, only the field compo-
nents tangential to the surface are considered (Fig. 2b).
As in the 2D case, the E-field and H-field components
are not separated in space, and both the tangential £ and
H field components are continuous across the interface of
two adjacent cells.

By differencing (20) to (25), one can easily obtain a
finite-difference formulation for Maxwell’s equations.

For example, considering (23), one has

n+1Ex(i;js k) - Ex(l:];k)
€ 5t
i tH( 43, k) = H (i, — 5, k)
- 5
e (i k +%)6—n+_Hy<i,f,k o
Z
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Thus, the updated value of , ,E (i,j,k) at the cell
center can be obtained from the values of E and H-field
components at the previous time step.

The remaining finite difference equations correspond-
ing to (20), (21), (22), (24), and (25) can be similarly
constructed.

Again, in order to get updated values of both £ and H
on the boundary of a 3D cell, the energy conservation
conditions are applied just as in the 2D situation. As a
result, one has

wi i B (i +3,k) = Zg o Ho (i, + 3, k)
=2[,E.(i,,k) = Zy , H.(i,], k)]
i Blivi = 3k) = Zo y HL (105 =3, K)]
(29)
wisE i i+ 3,k)+ Zy 1 H (6, +3,k)
=2[ E.(i,j+1,k)+ ZOHHZ(E,]‘H,k)]
~[a B i+ 3 k) ¥ Zo o (15 + 3, K)]
(30)
or,
pitEL(6 ] +3,k)
=, E(i,],k) = Zy,H.(i,],k)
+,E(i,j+1,k)+Z,,H,(i,j+1,k)
4 Bl =5 K) = Zo (121~ £.K)
B (13, k) + Zy, o H, (i, +3,k)] (31)
e (6, +3,Kk)
=[,E(i,j+1,k)+ Z, H,(i,j+1,k)
= E (i, k) + Zy H,(i,], k)] / Z,
o PN (N RN R A A (N ES NS

— 1 E(i,i =5 K)+ Zg o1 H (1,5 = 3,K)| / Z,
(32)
where Z,=+u /€.

The equations pertaining to updated values of other
tangential £ and H field components on the other
boundary surfaces of a 3D cell can be constructed in a
similar way or can be obtained by simply permutating
subscripts (x, v, z) and coordinates (i, j, k) in the above
equations.

As one can see, (7)-(17) and (28)-(32) constitute a
recursive finite-difference formulation for time-depen-
dent Maxwell’s equations based on a new grid arrange-
ment and energy conservation. When boundaries are
placed half-way between two neighbouring cells, i.e. at
the boundary surface of a 3D cell, the boundary condi-
tions can be fulfilled by simply enforcing them in (10) to
(12), or (29) to (30).
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Fig. 3. 2D TLM shunt node.

Generally speaking, this finite-difference formulation
ensures the continuity of both tangential electric and
magnetic field components across the interfaces of cubic
cells and the energy conservation within cubic cells, thus
generating a stable non-dissipative solution.

It is worth mentioning that Maxwell’s equations ensure,
of course, the conservation of energy, but this is by no
means a guarantee that a finite difference form of these
equations automatically conserves energy as well, except
in the infinitesimal limit. Thus energy conservation must
be explicitly enforced in a FD-TD scheme to ensure it.

III. VoLTAGE AND CURRENT RELATIONS IN THE
SYyMMETRICAL CONDENSED NODE oF TLM
AND ITS EQUIVALENCE TO THE
FINITE DIFFERENCE APPROACH

Various types of nodes have been proposed for the
TLM model. For two-dimensional problems, the shunt
node and the series node model [1] can be used, and for
three-dimensional problems, the expanded-node [14], the
asymmetrical condensed node [15] and the more recently
developed symmetrical condensed node model [16] exist.

A. The 2D TLM Node

Consider a 2D TLM shunt node model [1] without
inductive, capacitive and loss stubs (Fig. 3). For simplicity,
suppose that each link line has the same length, A/ /2
(regular mesh), and that all the assumptions made by
Johns are valid here. Note that the total voltages and
currents at midpoints between two adjacent nodes are the
sum or difference of the incident and reflected voltages
on the link line, according to transmission line theory. For
instance, if at time (n+3)At and position (i,k —3),
n+ 1V3(i, k —3) is the voltage impulse going toward the
node at position (i,k) and ,, ,V7(, k —3) is the voltage
impulse going away from the same node, then the total
voltage at (i, k —%) on link line 2 is

n+%V (l3k - %) =n+%VZt(l’k - %) +n+%V2r(l’k - %) (33)
and the total current flowing in link line 2, which is along
the z direction, at position (i, k —3) is
wel(ik=3) =, V3(ik = 3) =i V3 (i, k= 3)] / Zg

(34)

where Z, is the characteristic impedance of the link line.
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Note that ,, :V3(i, k — 1) arrives at the node (i, k) at
time (n +1)A¢ and is denoted as ,, ,V3(i, k), and VI (i, k)
arrives at the midpoint (i, k 1) at time (n + 4 )At and is
denoted as ., V5 (i, k - 1), that is: nt 1V2(z -H=
as1 V2l k), and V3G k — 1)Y= VJ(i, k). Then one has

n+1V( k-~ —) n+1V2(l k)+ VZ(l k)

7) [n+1VZI(i’k)_n

Similar voltage and current definitions and relations
with their corresponding equations can be derived on the
other link lines at midpoints between the nodes. Thus one
obtains

(35)

Vi(i, k)] /Z,. (36)

n+* z(

Vi k) =5( Vi k) +, V30 k) +, Vi k) +,Vi 3 k)

(37)

W k) = (Vi k)= V3i(i,k))/Z,  (38)

nLe(i k) = (Vi k) =, Vi(i,k))/Z,  (39)
V1K) = VA K)o V(1K)

= 1Va(i, k) +,V5(i, k) (40)

n+lI/)(i—%7k) n+lV(

=n+1Vll(i’k) +nVIr(i’k)

— 5. k) V(i35 k)

(41)

w1k +2) = V(e + 3) W (k4 )
= Vil k) + Vi (i, k) (42)

w V(i k =3)= =p Vil k—3)+ n+‘V’(lk“)
=, V3 k) +, V5 (i, k) (43)
we (i =1 K) = [, Vi =4 k) = (1= 3.0)] / 2

= [, Vi k)= V(1K) / 2,

werd (i 5k =], L V(i +4.k) — e Vi(i+3.0)] /2,
=[50, k)=, Vi(i. k)] / Z, (44)
wrd (k=) = [, V(e =Y = V3 (k= )]/ Z
=[aeaV3G k)= Vi, 0)] /2y (45)
wr il (ke 3) = [ Vi (ke +3) = Vi (i ke + )] /2,

= [V k) =, Vi k)] /2.

In addition, the TLM impulse scattering process is
defined as follows:

(46)

(k) =[S]V'(i, k). (47)
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Recalling that Z, =L /C and Al /At=1[/VLC, one
can easily show from the above relations that

n+lI/\(l+27k) n+— y( - k)

Al
n+11x(i’k) _n[x(i7k)
=—L v (48)
n+d y(l k+3 ) n+~V(l )
Al
I(i.k)y—,1.(i.k)
- _Ln+l bos nez
A (49)
(k)= Lk - )
Al
ped (i+3,k)— pr il (i—7.k)
- Al
V,(i,k)—=,V,(i,k)
:2 n+1"y n’y
¢ At (50)
and
we V(i k+3)+ Zg oL (i k +3)
=2(nVy(i,k)+ZOnlz(i,k))
_[n_%Vy(z‘,k-%)+Z0n_%lz(i,k—§] (51)
n+le}( ’k+%)_20n+%lz(i’k+%)
=2(nVy(i,k+1)—ZO,,IZ(i,k+1))
_[ni%l/y(i,kﬁ—%)—zo,l_%l(i,k+%)] (52)
n+lVy(l+%vk)+20n+§1x(i+%,k)
:2[an(i7k)+ZOn x(l k)]
~[aWi=5 k) + Zy, d(i-3.k)] (53)
iz+lll/y(i+%’k) Z()n+‘1 (l+’>ak)
=2[ V,(i+1,k)=Zy I (i+1, k)]
L i+ 3.0 = Zg, L (i 43.0)] (54)
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or,

neVy(isk+3)

= V(i) + Zg  L(i, k) +, ¥, (i +1)
On z(l k+1)
_%[n_lV(i,k‘“E)JFZO"—lI:(i’k_%)

V(i k+3) = Zg oLk +3)] (55)
— il (i,k +3)
= [V, (i, k +1) = Zy  L(i, k +1)
_nV(i’k)—Z()nI'(i’k)]/ZO
—%[n Wk +3)—Zy oL (ik+3)
Tn-1 y(l7 _5)_Z0n- (l k— )]/Z(]
~ (56)
”+z Y(l+2’k)
V,(i,k)+ Zy L (i k) +,V, (i +1,k)
~Zy L (i+1, k)
_l[n—ll/)’( )+ZOH l (l ’k)
—n—%Vv(l+5’k)_20n—%lx(i+—isk ] (57)
n+%1x(i+%,k)
= [ VK + Zo (k) = V(4 1,K)
+Zy, L(i+1,k)] /2,
+ =3[ V(=5 k) + Zg oL (i 5, k)
— V(i +3.k)+ 2y, 1L (i+3,k)| /2
(58)

Assume that at any time and grid point, one has the
following correspondences:

V,=E,, (59)
I,=H_, (60)
I,=—-H_, (61)
2C=e, (62)
L=y, (63)
Al=8x=8z=29 (64)
At =51, (65)

By considering the above equivalences, one can casily
see that (48)-(58), which were derived from the 2D TLM
shunt node formulation, are exactly the same as (7) to
(17) pertaining to the new finite-difference time-domain
scheme for the two-dimensional case, That is, the 2D
TLM shunt node model is equivalent to the FD-TD
formulation.

In the case of a series node model, or if stubs are
added for simulation of materials, it is not difficult to
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Fig. 4. 3D TLM symmeirical condensed node.

prove, by following a similar procedure, that the same
conclusions can be drawn.

B. The 3D TLM Symmetrical Condensed Node

Consider a symmetrical condensed node without induc-
tive, capacitive and loss stubs [16]. Each link line has the
same length, Al /2 (regular mesh) (Fig. 4). Similar to the
2D case, the total voltages and currents at midpoints
between two adjacent nodes are expressed as the sum or
difference of the incident and reflected voltages on the

link line. For instance, the total voltage at (i,j —3,k) on

link line 1 is

we V(i f =5, k) = V(i = 3, k) + 0 VT (67— 3, k)
(66)

and the total current flowing in link line 1, which is along

the y direction, at position (i,j — 3, k) is
n+lIy1( %7k)
= [71+%Vll(i’j_%’k).—n+%Vlr(i’j_%’k)]/ZO (67)

where Z, is the characteristic impedance of the link line.

Again, as in the 2D case, ,, 1Vi(i,j—3,k) arrives at
the node (i,j, k) at time (n+1DAt and is denoted as
2 1Vil,j, k), and V7 (i, j, k) arrives at the midpoint (7, j ~
3.k) at time (n+1)A¢ and is denoted as , .1/, j
— 1, k), that is, ., iVii,j—3%, k)=, Vi, ], k),
1 V7G,j—3,k) = VG, ], k). Thus,

o tValii =3, k)=, Vi@ 0, k)+ Vi (i,.k)  (68)
n+%1y1(i’j_%" k) = [n+1Vll(i’j9k) _nVlr(ivjyk)]/ZO"‘
(69)
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Therefore, one has
n+l xlz(isf"'%’k)
e VBT ) V(0 2, K)
=V, j,k) +n+1Vf2(i,j,k)
n+%1y12(i7j+%’k)
= [ aVh(isi + 5. k) = V(i +3,K)] / 24

(70)

= [ V(i k) = V(1,5 k)] / Z4 7D
artValisi—3,k)
=, Vil 7= 2. k) V(6= 3, k)
(72)

=, Vi, 0 k)+,V(i,], k)
n+%1y1(i>j_%7k) .

= [ Vil i=5 k)= Vi (i - 1.5 / 2,

=[a e Vi G K) = VIG5, K)] /2 (73)
n+%122(i7j7k_%)

=, V(i k= 3) =V (i k = 3)] / Z,

= [w V300 K6) = V3 (i,4,K)] / 24 (74)
n+%129(i’j7k+%)

= [ Vs ik +5) =y Va(isi ke +5)] /2

=[50 k) = e Vi(i,0,K) ] / Zo. (75)
In the paper presented by Johns [16], scattered voltages

are related to the incident voltages through a scattering
matrix [S] at node (i, j, k):

F(60k) =[SV (i,i,k) (76)
with
i 1 1
1 1
1 1
1 1
1 1
1
_ 1 1
18]= 2 -1 1
1 -1
1 -1
-1 1
-1 1
1 -1

The voltages and circular currents at the nodes are also
related to the incident voltages as follows: .

watVe(is i k) =3[, L Vi k) +, V3 (iL 0 k)
+ e Va(i, 0 k) + V(00 k)] (77)
Vellsd k) =3[, Vi(i,J,k)+ Vi, j, k)
+Vs(1,), k) + V(i1 k)] (78)
Ly (i, k) = =3 (Vi = Vi+ Vi = Vi) /Zy  (19)

where nIxy(i,j,k) is the mesh or common current on
x — y plane at node (i, j, k).
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Since Z,=yL /C and Al /At =1/VLC, one can eas-
ily verify the following relations from (70) to (79):

n+le(i’j’k) _an(lﬂjrk)

2C A7
- n+%1y12(i7j+%7k)—n+% }'l(i’j__%’k)
Al
n 117 l,],k“‘% ~n 1127 i:j’k_i
etk ) alalib k=)
Al
and

e Va7 + 3.5+ Zg sDp (i, + 5, k)
=2[ V(i k) + Zy L (1,7, K)]
PRGNS RO B/ S (R RSN 3]
(81)
neVar(B 7+ 3, k)= Zg il (i,5 =5, k)
=2[nn(i,j+1,k)—ZOnlxy(i,jH,k)]
—[n_% Xlz(i,j+%,k)—ZOn_%Iylz(i,j+%,k)]
(82)
or,
nstVer (B0 + 3, k)
=V(i,0,k)+ Zy L, (1,7, k) +,V, (i, +1,k)
—Zy 1, (1,7 +1,k)
_%[nﬁ alisi =2, k)+ Zy o d,(i, = 3, K)
ta-1 le(i’j+%7k)_ZOn—%Iy12(i7j+%7k)] (83)

1 -1
-1 1
1 -1
~1 1
~1 1
1 -1
1 1
1 1
1 1
1 1
1 1
1 1 |

~nrtha(h i+ 3, k)
= [V, i+1,k) = Zy L (i, ] +1,k) =, V.(i,j, k)
- Z,,1,,(i,j, k)] / Z,
‘%[n_% (i +3,k)— Zg nosdyn(i,j+3,k)
“n-tVaalls] =2 8) = Zo il (i1 = 3.K)] / 2.
(84)
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TABLE 1
THE NoRMALIZED CUTOFF FREQUENCY OF THE FINNED WAVEGUIDE OBTAINED WITH THE NEW TD-FD
orR TLM MEeTtHOD AND THE TD-FD oN YEE’S SCHEME

Results of

Errors compared with the
Transverse Resonance (%)

Results of Result of the
New TD-FD the TD-FD of Transverse The New TD-
or TLM Yee’s scheme Resonance FD method or The TD-FD on
b/Ae b/ b/Ac b/Ac TLM Yee’s scheme
4 0.2051 0.2050 8.80 8.85
8 0.2155 0.2155 4.18 4.18
12 0.2189 0.2174 2.67 333
16 0.2206 0219 0.2249 191 236
20 0.2217 0.2184 1.42 2.13
24 0.2224 0.2221 1.11 1.24
If one assumes that voltages and currents defined above a
are associated with the appropriate field components as l
indicated in [16]: Id .
V,=E, at(i,j,k)and (i,j+3,k) (85) | »
I,=H, at(i,j,k) (86) )
(a
I.=H, at(i,j,k i%) (87) e e e
—_ . . 1 :
—I1,=H, at(i,j+3.k) (88) : !
2C=e¢ (89) l :
[ P LR . |
Al=0x=0z=96 (90) b
Ar=d1 (91) Fig. 5. (a) Crosssection of a finned rectangular waveguide. (b) Two-

at any time step, then (80)—(84) are exactly the same as
(28)—(32), one of the new finite-difference formulae for
Maxwell’s equations.

The remaining equations can be derived in a similar
manner by assuming V,=E , V. =E,, u=2L and per-
mutation of subscripts (x, y, z) and coordinates (i, j, k) in
(86)-(88) for current and H-field components. L and C
are the inductance and capacitance per unit length of the
link lines. Thus, it is shown that the three-dimensional
symmetrical condensed node TLM model is numerically
equivalent to the finite-difference equations for Maxwell’s
equations. One can easily verify that the same conclusion
will be reached by following a similar procedure for a
condensed node with stubs.

So far it has been shown that the 2D TLM node and
the 3D symmetrical condensed TLM node are each nu-
merically equivalent to a finite-difference formulation.
Furthermore, according to Johns [12], the 3D expanded
node TLM model corresponds to Yee’s finite-difference
method. Hence, the equivalence between TLM and FD-
TD formulations in general is now fully demonstrated.
This suggests that any TLM algorithm can be formulated
exactly in a finite-difference form and vice versa.

IV. Numericar Resurrs

The new finite-difference time-domain (FD-TD) formu-
lation (or TLM method) and Yee’s finite-difference time-
domain method have been compared for the two-dimen-
sional case by computing the normalized cutoff frequency
of the finned waveguide shown in Fig. 5.

dimensional mesh arrangement for the waveguide shown in (a). Through
introduction of symmetry conditions, only one half of the cross section is
required for the analysis of the TE |, mode. Note the boundaries dual to
those 1n the real structure. (- — —: magnetic wall; —: electric wall).

Table I shows that both numerical solutions converge
to the result given by transverse resonance method [17] as
the number of mesh points is increased while the number
of iterations remains the same in both methods. It can be
seen that the new formulation has slightly better accuracy
than Yee’s finite-difference method, as mentioned in [18].
The reasons are that in the new model, more field compo-
nents, including both tangential electric and magnetic
field components at points between the cells, are com-
puted or taken into account. Furthermore, the field com-
ponents are all defined at a single location in the new
formulation.

Fig. 6 shows the convergence of the numerical results
with increasing number of iterations for b /Al = 4. It can
be secen that the new FD-TD formulation converges more
rapidly and smoothly than Yee’s FD-TD method in term
of number of iterations. This is achieved at the expense of
increased computational expenditure since each iteration
with the new FD-TD formulation takes slightly more
time. It was found that the total CPU time required for
both methods was almost the same for the same required
accuracy. Even in this case, the new formulation provides
better field resolution due to the fact that the field
components are evaluated in a larger number of positions
in space. In addition, as the number of iterations in-
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Fig. 6. Normalized cutoff frequency in the rectangular finned waveguide obtained for increasing number of iterations.

creases, the new algorithm converges very smoothly to its
stable solution while Yee’s scheme displays some oscilla-
tory convergence. This can be explained by the fact men-
tioned earlier that in the new time-domain finite-dif-
ference formulation or the symmetrical condensed TLM
node model, the continuity of the tangential field compo-
nents across the interfaces of the cells and the energy
conservation within the cells are ensured.

V. CoNcLUSION

In this paper, a new finite-difference time-domain for-
mulation for Maxwell’s equation, which is different from
that of Yee’s scheme presently used, has been proposed.
The new finite-difference equations form a kind of “con-
densed” model where both electric and magnetic field
components are defined at the cell centers and at mid-
points between adjacent cells. As a result, a better resolu-
tion and accuracy than Yee’s scheme for solving electro-
magnetic problems are expected. This has been verified
by comparing the two finite-difference formulations for
the 2D cases in computing the normalized cutoff fre-
quency of a finned waveguide. In addition, the exact
equivalence between the proposed finite-difference time-
domain formulation and the TLM condensed node model
has been demonstrated. In other words, the TLM algo-
rithm can be exactly formulated in finite-difference time-
domain forms and vice versa. However, in spite of their
equivalence, both algorithms retain their specific advan-
tages. For instance, the finite-difference formulation has
a simpler algorithm when constitutive parameters are
directly introduced. On the other hand, the TLM model
has certain advantages in the modelling of boundaries
and the partitioning of the computational domain using
Johns Matrix techniques. Further studies regarding the

properties of the new FD-TD scheme in the three-dimen-
sional case are in progress.
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