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Abstract —This paper describes a new finite-difference time-
domain (FD-TD) formulation which is different from the FD-TD
based on Yee’s scheme. It is shown that the new finite-difference
time-domain formulation is exactly equivalent to the symmetri-
cal condensed node model used in the transmission line matrix

(TLM) method. More specifically, the TLM method can be
exactly formulated in a finite-difference form in terms of total
field quantities. Due to a better field resolution and fulfillment

of continuity conditions, the new FD-TD formulation or its TLM

equivalent model give better convergence and accuracy than the

traditional FD-TD method presently used. This is illustrated by

numerical results pertaining to a finned waveguide.

I. INTRODUCTION

R ECENTLY, time domain solutions for field prob-

lems have received growing attention. Two currently

employed techniques are the transmission-line matrix

(TLM) method [1], [2] and the finite-difference time-

domain (FD-TD) method formulated by Yee [3]. The

TLM method is physical model based on Huygens’ princi-

ple using interconnected transmission lines while FD-TD

is an approximate discrete mathematical model directly

based on Maxwell’s equations. Although they have been

developed independently, both methods have been exten-

sively applied to solve similar electromagnetic field, diffu-
sion and network problems in the time-domain [4]–[10].

The flexibility and simplicity of their basic algorithms

make them very attractive. Indeed, they can treat arbi-

trary geometries and account for realistic features that

are often neglected in theoretical analyses. Most pub-

lished work on the application of these techniques has

been devoted to the computation of specific structures,

modelling of various types of boundaries, material param-

eters, implementation of graded and conformal meshes

and the development of improved nodes.
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In spite of these successful applications, the exact rela-

tionship between the TLM and finite-difference formula-

tions has been fully explained even though some work

along these lines has been done by P. B. Johns [11], [12].

He demonstrated that the expanded 3D TLM node model

numerically corresponds to a finite-difference scheme

when they are operated in a certain way. However, there

exists no FD-TD scheme that is equivalent to the symmet-

rical TLM condensed node, developed by Johns himself,

since the six field components are not defined in the same

points in Yee’s finite-difference time-domain scheme. This

issue is addressed in this paper where a new finite-dif-

ference time-domain formulation for Maxwell’s equations

is proposed and shown to be equivalent to the TLM

condensed node algorithm when expressed in terms of

total field quantities.

II. A NEW TIME-DOMAIN FINITE DIFFERENCE

FORMULATION FOR MAXWELL’S EQUATIONS

A. The Two-Dimensional Case

First consider the two-dimensional Maxwell’s equations

for transverse magnetic (TM-to-y ) waves in a stationary

and sourceless medium:

EX=EZ=O, HY=O, (1)

dEY (3Hz

dx ‘–pdt ‘

dEY i3HY
—=+p —
82 dt ‘

(2)

(3)

dHX dHZ dEy
—–—=+6—
(3Z (?X dt

(4)

where ~ and E are the permitivity and permeability of the

medium to be modelled.
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Following Yee’s notation [3], we denote a Cartesian

grid of points on the x – .z plane as

(i, k)=(iax, kaz) (5)

and any function of discrete space and time as

F(i&x, kaz, n8t) =nF(i, k) (6)

where S = 8X = S.z are the space discretization units

(taken to be the same for simplicity), ($tis the time

increment, and i, k, n are integers.

Now, the 2-D region is discretized into a mesh shown in

Fig. 1. Unlike in Yee’s scheme [3], all the three nonzero

field components of E and H are defined at a node

located at the center of the 2D cell, while at the nodes on

the boundary contours, only the magnetic field compo-

nents tangential to the contour and the electric field

normal to the mesh area are considered (Fig. 1). As a

result, the E and H-field components are not separated

in space but are all defined at the same grid points. This

grid arrangement ensures that both the tangential E and

H field components are continuous across the interface of

two adjacent cells.

The finite-difference formulations at node (i, k) for (1)

to (4) are therefore as follows:

,t++~,(~+;,k)–.++E,(i–A,k)
ax

.+l~,(i, k)–.H,(i, k). . lJ- St

n+4Ey(~7k+4)–n++~,(i>k–+)
8Z

.+l~.(~)k)–.H.(i,k)
=+/-L

13t

.+;HX(i, k+~)–n+;H,(i, k–~)

6Z

,,+#Iz(i +~, k)–H+;HZ(i–~, k)

8X

~+l-E,(i,k)-. Ey(i,k)
=+E

r3t

(7)

(8)

(9)

From the above equation, the updated values of

~+lEY(i, k), ~+1 HZ(i, k) and ~+ ~HX(i, k) at the cell center

can be obtained from the values of E and H-fields at the

previous time step.
In order to get the updated values of the E and H-field

components at the boundary of each cell, the energy
conservation conditions, which correspond to the unitary

condition of S-parameters in circuit theory, are imposed

on the field quantities of each cell. That is, the field

components at the boundary of each cell are decomposed

-contou
Field components defined:

For TM to -y waves:
At (i , k):
At (if+, k):
At (i, kf~):

Ey, Hx, Hz
Ey, Hz
Ey, Hx

Fig. 1. Grid positions for the 2D condensed TD-TD formulation.

into two sets of “local” plane waves (transmission line

modes): one is going towards the cell center and another

away from the cell center. The energy entering a cell

should be equal to the energy leaving the cell at the next

time step. As a result, one has:

=2[nEY(i, k)– ZO#,(i,k)]

-[n_+E,(i,k -~)-z,._+H.,(i, k-$)] (110)

.+tEY(i, k+~)+ZOH+&(i,k+~)

=2[#y(i, k+l)+ZOnH1(i, k+l)]

-[n-,EY(i,k+#)+zoil-,~.(ik+:](11)

=2[~EY(i, k)+ ZO.Hz(i, k)]

-[n_:E,(i-~,k)+zo,,-+H.(i-$,k)] (14

.+lEY(i +~, k)– Zon++Hz(i+~, k)

=2[~EY(i +1, k)– Zo.HZ(i+l; k)]
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or,
.+$y(i, k++)

=nE,(i, k)–zonH,t(i, k)

+nEy(i, k+l)+zo, tHy(i, k+l)

-+[,z-,~,(~~-+)-zon-, ~.(~~-+)

+n_~EY(i, k+~)+Zo ._#YX(i, k+~)] ( 14)

,l+&. (i, k++)

=[,lE,(i,k +l)+zonH&k+l)

—&(i, k)+zonH.t(i, k)]/zo

-~[,,_~Ey(i,k +~)+Zo._~~,(i,k+~)

—._p,(i, k-+)+ zon_+H,(i, k-+)]/zo

(15)

.+@y(i++, k)

=nE,(i, k)+zonHz(i, k)+nE,(i+l, k)

–zo,,Hz(i+l, k)

-~[._,~y(i-+k)+ Z,,, -+~z(i-%,k)

—._#v(i+ #,k)-Zo,, _;Hz(i+~, k)] (16)

,z+#z(i++, k)

=[&.(i,k)+Z o,lHZ(i,k)-& Y(i+l, k)

+zo, #J~+uc)]\zo

-+[,L_+~,(i-i2k) +zo._+Hz(i-+, k)

—,z_:Ey(i ++, k)+ Z0,1_+H2(i+:, k)\Zo

(17)

where Z, = J~.

B. The Three-Dimensional Case

For three-dimensional cases, Maxwell’s curl equations

in a stationa~ and sourceless medium in the time-domain

are
dH

pT=– VXE, (18)

(3E
EG=VXH. (19)

In a rectangular coordinate system, (18) and (19) be-

come the following system of scalar equations:

dHX dEY dEz

~dt=dz–dy
(20)

dHY dEz dEX

‘z= (?x – dz
(21)

dHZ dEX dEY
—= —— —

p dt dy (?X
(22)

dEx dHZ dHY

‘dt=dy–dz
(23)

dEY i?HX dHZ
—= —— —

6 dt dz dx
dEZ L?HY dHX
—= —— —

‘dt c?X dy’

(24)

(25)

W’—-y
(a)

~ represents the directions of both
electric and magnetic field
components defined

(b)

Fig. 2. (a) Positions of the field components about a unit cell of the
Yee lattice. (b) Positions of the field components about 3D cell of the
new finite-difference time-domain formulation,

Just like in the 2D case, we denote a Cartesian grid of

points as

(i, j,k)==(i~x, j~y, kdz) (26)

and any function of discrete space and time as

F(iSx, j8y, k&z, nt$t) =~F(i, j,k). (27)

6 = 8X = 8% = tiz are the space discretization units

(taken to be the same for simplicity), at is the time
increment, and i, j, k, n are integers.

In contrast to Yee’s scheme [3] (see Fig. 2(a)), the six

field components of E and H are defined at a node

located at the center of the 3D cell, while at the nodes on

the bounda~ surface of the 3D cell, only the field compo-

nents tangential to the surface are considered (Fig. 2b).

As in the 2D case, the E-field and H-field components

are not separated in space, and both the tangential E and

H field components are continuous acrow the interface of
two adjacent cells.

By differencing (20) to (25), one can easily obtain a

finite-difference formulation for Maxwell’s equations.

For example, considering (23), one has

~+lE~(i,j,k)–~~,,(i,j,k)
E

al

~+~Hz(i, j+~, k)–. +; HZ(i, j– ~,k)

ay

,,++HY(i, j,k+~)–~+@Y(i, j,k -~)

82
. (28)
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Thus, the updated value of .+lE~(i, j, k) at the cell
center can be obtained from the values of E and H-field

components at the previous time step.

The remaining finite difference equations correspond-

ing to (20), (21), (22), (24), and (25) can be similarly

constructed.

Again, in order to get updated values of both E and H

on the boundary of a 3D cell, the energy conservation

conditions are applied just as in the 2D situation. As a

result, one has

~++Ex(i, j+~, k- ZOn+#z(i, j+~, k)

=2[nEx(i, j,k)–-ZO,lli,(~, j,k)]

-[n-iEx(~,j-*,k) -zOn_;~z(i,j-*,k)]

(29)

.+;E.(~, j+; ,k)+zO.+;~.(~, j+%, k)

=2[nEx(i, j+l, k)+ ZonHz(i,.j+l, k)]

-[n_iEx(i, j+~, k)+ Zon_#lz(i, j+~, k)]

(30)

or,

.+;Ex(i, j+~, k)

=nEx(i, j,k)– ZonH:(i, j,k)

+~EX(i, j+l, k)+ Zo~HZ(i, j+l, k)

-~[n-;Ex(ijj-*, k)-Zon-;~z(i,j-i,k)

+ ._:E~(i, j+~, k)+ ZO. -;~.(i, j+%)k)] (31)

.+#Iz(i, j+~, k)

=[nEx(i,j+l, k)+ ZonHz(i,j+l, k)

—~Ex(i, j,k)+ZonHz(i, j,k)]/Zo

-;[n-, (Ex i,j+~, k)+.Zon_;Hz(i, j+~, k)

–n_iE1(i, j–i, k)+zOn_iHz(i,j –~, k)]/&

(32)

where Z. = ~.

The equations pertaining to updated values of other

tangential E and H field components on the other

boundary surfaces of a 3D cell can be constructed in a

similar way or can be obtained by simply permutating

subscripts (x, y, z) and coordinates (i, j, k) in the above

equations.

As one can see, (7)-(17) and (28)-(32) constitute a

recursive finite-difference formulation for time-depen-
dent Maxwell’s equations based on a new grid arrange-

ment and energy conservation. When boundaries are

placed half-way between two neighboring cells, i.e. at

the boundary surface of a 3D cell, the boundary condi-

tions can be fulfilled by simply enforcing them in (10) to

(12), or (29) to (30).

4
r ‘t (l+l,k)

I
!slEii

LY
(i+~,k)

Al - -, 3
(i,k~~) (i,~+~)

+

24

(i,k-1) , (i,k)l (i,k+l) 1

(i!~~k) - d
Contour S

I (i-i,k) 1

Fig. 3. 2D TLM shunt node.

Generally speaking, this finite-difference formulation

ensures the continuity of both tangential electric and

magnetic field components across the interfaces of cubic

cells and the energy conservation within cubic cells, thus

generating a stable non-dissipative solution.

It is worth mentioning that Maxwell’s equations ensure,

of course, the conservation of energy, but this is by no

means a guarantee that a finite difference form of these

equations automatically conserves energy as well, except

in the infinitesimal limit. Thus energy conservation must

be explicitly enforced in a FD-TD scheme to ensure it.

III. VOLTAGE AND CURRENT RELATIONS IN THE

SYMMETRICAL CONDENSED NODE OF TLM

AND ITS EQUIVALENCE TO THE

FINITE DIFFERENCE APPROACH

Various types of nodes have been proposed for the

TLM model. For two-dimensional problems, the shunt

node and the series node model [1] can be used, and for

three-dimensional problems, the expanded-node [14], the

asymmetrical condensed node [15] and the more recently

developed symmetrical condensed node model [16] exist.

A. The 2D TLM Node

Consider a 2D TLM shunt node model [1] without

inductive, capacitive and loss stubs (Fig. 3). For simplicity,

suppose that each link line has the same length, Al/2

(regular mesh), and that all the assumptions made by

Johns are valid here. Note that the total voltages and

currents at midpoints between two adjacent nodes are ithe

sum or difference of the incident and reflected voltages

on the link line, according to transmission line theory. For

instance, if at time (n + ~)A t and position (i, k – ~),

.+ ;J’’i(i, k – ~) is the voltage impulse going toward the

node at position (i, k) and ~+ ;V~(i, k – ~) is the voltage
impulse going away from the same node, then the tc)tal

voltage at (i, k –’ ~) on link line 2 is

~+; Vy(i, k–;)=n+iV;(i, k-;)+ n+iV;(i, k-;) (33)

and the total current flowing in link line 2, which is along
the z direction, at position (i, k – ~) is

where Z. is the characteristic impedance of the link line.
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Note that ,,+ ~V;(i, k – ~) arrives at the node (i, k) at Recalling that Z. = ~~ and Al/At = I/@, one
time (n + l)A t and is denoted as ~+ ~V~(i, k), and ~V[(i, k) can easily show from the above relatiOns that

arrives at the midpoint (i, k – ~) at time (n + ~)At and is

denoted as .+ ~VJ(i,k –~), that is: .+ ;V;(i, k –;)= ~+;~,(i +;, k)–n+:Vy(i –&k)
.+l V~(i, k), and- .+ ~V;(i, k – ~) =nV;(i, k). Then one-has

Al

,,++~(~,k-~)=. +,Vi(i,k)+nV;(i,k) (35)

~+#,(i, k-~)= [,z+lV;(i, k)-nV;(i, k)]/ZO. (36)

Similar voltage and current definitions and relations

with their corresponding equations can be derived on the

other link lines at midpoints between the nodes. Thus one

obtains

,,z,(i, k)=(nWi, k)-n V;(i, k))/zO (38)

,,~.(~,k) = (nV:(i, k)–#;(i, k))/ZO (39)

~+l~~(i,k)–n~i(i,k)
=–L

At

,,++~,(ik++)-n++~y(~,k-+)

Al

~+lI=(i. k)–nI=(i, k)
=–L

At

,,++zz(i>k++)–n++~,(i,k–+)
Al

,,+Jx(i +~, k)-n+iIx(i-~, k)

Al

,t++q(~+i,~)=.+~~i(~+;,k)+.+; ~((i+i, k) n+l~,(~,k)–n~y(i,k)
=2C

At
=,,+l~~(i, k)+nV:(i, k) (40)

—
–,,+l~~(~,k)+.~[(i,k) (41) ~+: Vv(i, k+~)+Zon+#:(i, k+~)

,l+4Vy(i, k+~)=n+;~(i, k+~)’+n+&@k+~)

=z(nq(i,k)+zon~z(~,k))

=n+l~(i, k)+n~(i, k) {42)

~)-,, +;~~(itk -4)+n+4Vj(i, k-~),l+:V,(i, k–~ –
-[,l_4P’v(i,k -~)+ ZOn_#z(i,k

=n+lVJ(i, k)+nV;(i, k) (43)
~++ If,(i,, k+~)-ZO n++I:(i, k+~)

,,+;~x(i –;, k)=[n++~;(i –;, k)–n+;~:(i –;, k)]/zO
=2(n~(i, k+l)– ZO,,I,(i, k+l))

=[,,+,~/(i, k)-,,~[(i>k)]/zO

.+:~.t(i +~, k)=[. ++~;(i+ ;lk)–. +:~:(i+; ,k)]/zO
-[n,~(i,k+~)-zo,, -j~,(i,k+~)]

‘[n~I(i>k)-n+,W( i>k)]/zo. (46) ,,+4Vy(i +$, k)– Zon+#x(i +&k)

In addition, the TLM impulse scattering process is

defined as follows:
=2[,l~(i +1, k)- Z0,,l,(i+l,k)]

(48)

(49)

(50)

(51)

(52)

(53)

J’r(i, k)=[S]nV’(i, k). (47) -[.-+~(i+;,k)-zon-;~. (i+;, k)] (54)
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or,

.++vy(i, k++)

=nvy(i, k)+zonI=(i, k)+nvy(i, k+l)

–zonIz(i, k+l)

‘i[n-jK(~)~-i)+ zOn-;Z=(i,k -*)

+._~VY(i, k+~)– ZO. _#z(i, k+~)] (55)

–~+i~z(i, k++)

=[~~(i, k+l)-ZO,,l=(i, k+l)

–nvy(i,k)–zonIz(i, k)]/zo

‘~[n-;~y(i,~+~) -zo,l;~z(i,k+i)

–fl_:Vy(i, k-~) -ZO,l_~Iz(i, k-~)]/zO

(56)

.++vy(i+; ,k)

=. VY(i, k)+ ZonIx(i, k)+,l~,(i+l, k)

–Zo.lX(i+l, k)

‘i[,z-;K(i-~,k) +zon_;Ix(i-A,k)

—~_;~v(i +~, k)– Zo,,_#x(i+~, k)] (57)

.+#x(i+~, k)

‘=[~VY(i, k)+ ZonIx(i, k)-,zVv(i+l, k)

+Zo.ZX(i+l, k)]/ZO

(“ 1 k)+ Zo._#x(i-*, k)+–i[n_+vy l–j,

–,l_;Vy(i +#, k)+ Zo._Jx(i+~, k)]/Zo.

(58)

Assume that at any time and grid point, one has the

following correspondences:

VYe E
Y>

(59)

IX= HZ, (60)

IZ=– HX, (61)

2C=E, (62)

Lep, (63)

A1=SX=8Z=6 (64)

At =8t. (65)

By considering the above equivalences, one can easily

see that (48)–(58), which were derived from the 2D TLM

shunt node formulation, are exactly the same as (7) to

(17) pertaining to the new finite-difference time-domain

scheme for the two-dimensional case, That is, the 2D

TLM shunt node model is equivalent to the FD-TD

formulation.

In the case of a series node model, or if stubs are

added for simulation of materials, it is not difficult to

z

●Y

x

Fig. 4. 3D TLM symmetrical condensed node.

prove, by following a similar procedure, that the same

conclusions can be drawn.

B. The 3D TLM Symmetrical Condensed Node

Consider a symmetrical condensed node without induc-

tive, capacitive and loss stubs [16]. Each link line has the

same length, A 1/2 (regular mesh) (Fig. 4). Similar to the

2D case, the total voltages and currents at midpoints

between two adjacent nodes are expressed as the sum or

difference of the incident and reflected voltages on the

link line. For instance, the total voltage at (i, j – ~, k) on

link line 1 is

.+~Vxl(i, j–*, k)=. +~V~(i, j–~, k)+.+ ~Vf(i, j–~, k)

(66)

and the total current flowing in link line 1, which is along

the y direction, at position (i, j – ~, k) is

~+;lyl(i, j–~, k)

‘[,L+;V((ijj-~,k)- ~+; V((i, j–~, k)]/Zo (67)

where 20 is the characteristic impedance of the link line.

Again, as in the 2D case, .+ ~V~(i, j – ~, k) arrives at

the node (i, j, k) at time (n +1) A t and is denoted aLs

.+ ~V~(i, j, k), and .V{(i, j, k) arrives at the midpoint (i, j --

~, k) at time (n+ l)At and is denoted as .+ ;V~(i, j

– ~, k), that is, .+ AV((i, j –~, k) =.+l V~(i, j, k),

~+ ;V~(i,j – ~, k) =nV{(~, j, k). Thus,

.~:v.l(i, j–~, k)=. +lv;(i, j,k)+.v{(i, j,k) (68)

.+#yl(i, j-~, k)=[,z+lV~(i, j,k)-~V{(i, j,k)]/Zo

(69)
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Therefore, one has Since Z. = ~~ and Al/At = l/~, one can eas-

~++y,12(i, j++, k) ily verify the following relations from (70) to (79):

.+; P’{2(i, j+$, k)+.+ ~V~2(i, j+*, k) .+lYK(ijj, k)–.Vx(i, j,k)——
2C

At
=nV;2(i, j,k)+. +lV~2(i, j,k) (70)

,z+41Y12(i, j+~, k)
~+#y12(i, j+~, k)-~+#},l(i, j-~, k)

‘[.+;V[~(i,j+~,k)-

—— —
Al

.++ V;2(i, j+; ,k)]/’Z0 ~+;lzg(i, j,k+$)–~+ #zz(i, j,k-~)

=[nV(z(i,j, k)-.+ lV;z(i,j, k)]/zo (71)
—

Al
(80)

~+iVx,(i, j–~, k) and

,~1(. . 1
‘n+z I L>] —z, k)+n++vlr(i, ] —;, k) ~++~tlz(i, j+~, k)+ ZOn+#Y12(i, j+~, k)

=~+lV~(i, j,k)+,,V[(i, j,k) (72) =2[nK(i, j,k)+zo .~.Y(i, j,k)]

~+#Yl(i, j-~, k) -[,, _:~l(i, j-~, k)+ ZOm_iIyl(i, j-~, k)]

‘[n++w’j-+,k )-.+~V~(i,j-~,k)]/zo (81)

=[.+,V~(i,j, k)-.V{(i,j, k)]\zO (73) ~+iVx12(i, j+~, k)– ZO~+#Y12(i, j-~, k)

~+;Zz2(i, j,k–~)

=[n++V~(i,j,k -~)-. +iV;(i j k-~)]/ZO

=2[n~(i, j+l, k)– ZO.lxy(i, j+l, k)]

=[n+lVJ(i,j, k)-.V1(i,;”, k)];~O

-[n_; ~12(i, j+~, k)- ZO~_#Y12(i, j+~, k)]

(74) (82)

~++~zg(~jj)k++)
=[n+,V;(~,j)~+*)-n++~;(~7j7k+*)]/zo ~~+~,2(i,.j+*,~)
=[n~J(~,j,k)-.+,~J(i,j, k)]/zo. (75) =. Vx(i, j,k)+Zo ~Iz,(i,j,k )+nVx(i,j+l, k)

In the paper presented by Johns [16], scattered voltages
–Zo~lXY(i, j+l, k)

are related to the incident voltages through a scattering

matrix [s] at node (i, j, k): -~l._;K~(i,j-~, k)+zo._41yl(i,j -~, k)

~V’(i, j,k) = [S]~Vi(i, j,k)

with

(76)
+ n-$’’k(iJ’+2 k)- ZO._#Y1,(i, j+~, k)] (83)

11 1 –1
1 1 –1 1
1 1 1 –1

1 1 –1 1
1 1 –1 1

,[s]=;
1 1 1 –1

–1 1 1 1
1 –1 1 1

1 –1 1 1
–1 1 1 1

–1 1 1 1
1 –1 1 1

The voltages and circular currents at the nodes are also

related to the incident voltages as follows:
—

.+lY,(i, j,k)=~[. +lVJ(i, j,k)+. +lV;(i, j,k)
~+#Y12(i, j+&k)

+.+lVJ(i, j,k)+. +lVf,(i, j,k)] (77) =[nu(i,j+l, k)-z, n~,,(i,j+l, k)-nvx(i,j, k)

.~.(i,j,~)=~[n~i(z,j,k)+nv;(i,j,k) –.%.z.y(i, j,k)]/.Zo
+. VJ(i, j,k)+nV~z(i, j,k)] (78)

~[~_iVx12(i, j+~, k)– Zon_#Ylz(i, j+~, k)——

.l$Y(i, j,k) = –~(~V; –nV~ +.V;I –#’;2)/Zo (79)
–n_iV.l(i, j–~, k)– ZO.-~~Yl(i, j–~, k)]\ZO.

where ~IxY(i, j, k) is the mesh or common current on

x – y plane at node (i, j, k). (84)
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TABLE I

THE NORMALIZED CUTOFFFREQUENCYOF THE FINNED WAVEGUIDE OBTAINED WITH THE NEW TD-FD
OR TLM METHOD AND THE TD-FD ON YEE’S SCHEME

Errors compared with the

Results of Results of Result of the
Transverse Resonance (%)

New TD-FD the TD-FD of Transverse The New TD-
or TLM Yee’s scheme Resonance FD method or The TD-FD on

b/AL b//it b/At b/At TLM Yee’s scheme

4 0.2051 0.2050 8.80 8.85
8 (),~155 0.2155

12

4.18 4.18
0.2189 0.2174

16
0.2249

2.67
0.2206

3.33
0.2196

20

1.91 2.36
0.2217 0.2184

24
1.42 2.13

0.2224 0.2221 1.11 1,~~

If one assumes that voltages and currents defined above

are associated with the appropriate field components as

indicated in [16]:

V,EEX at (i, j,k) and(i, j+~, k) (85)

lXy-Hzat(i, j,k) (86)

l== HYat(i, j,k ti) (87)

-lY=HZat(i, jt~, k) (88)

2CEE (89)

AI=8X=(3Z=6 (90)

At =8t (91)

at any time step, then (80)–(84) are exactly the same as

(28)-(32), one of the new finite-difference formulae for

Maxwell’s equations.

The remaining equations can be derived in a similar

manner by assuming ~v - EY, V= = Ez, p = 2L and per-

mutation of subscripts (x, y, z) and coordinates (i, j, k) in

(86)-(88) for current and H-field components. L and C
are the inductance and capacitance per unit length of the

link lines. Thus, it is shown that the three-dimensional

symmetrical condensed node TLM model is numerically

equivalent to the finite-difference equations for Maxwell’s

equations. One can easily verify that the same conclusion

will be reached by following a similar procedure for a

condensed node with stubs.

So far it has been shown that the 2D TLM node and

the 3D symmetrical condensed TLM node are each nu-

merically equivalent to a finite-difference formulation.

Furthermore, according to Johns [12], the 3D expanded

node TLM model corresponds to Yee’s finite-difference

method. Hence, the equivalence between TLM and FD-

TD formulations in general is now fully demonstrated.

This suggests that any TLM algorithm can be formulated

exactly in a finite-difference form and vice versa.

IV. NUMERICAL RESULTS

The new finite-difference time-domain (FD-TD) formu-

lation (or TLM method) and Yee’s finite-difference time-

domain method have been compared for the two-dimen-

sional case by computing the normalized cutoff frequency

of the finned waveguide shown in Fig. 5.

ml
k

(a)

M

~--- ---

,,

~. -----.,

(b)

Fig. 5. (a) Crosssection of a finned rectangular waveguide. (b) Two-

dimensional mesh arrangement for the waveguide shown in (a). Through
introduction of symmetry conditions, only one half of the cross sectiorl is
required for the analysis of the TE lo mode. Note the boundaries dual to
those m the real structure. (– - –: magnetic wall; —: electric wall),

Table I shows that both numerical solutions converge

to the result given by transverse resonance method [17] as

the number of mesh points is increased while the number

of iterations remains the same in both methods. It can be

seen that the new formulation has slightly better accuracy

than Yee’s finite-difference method, as mentioned in [1 8].

The reasons are that in the new model, more field compo-

nents, including both tangential electric and magnetic

field components at points between the cells, are co]m-

puted or taken into account. Furthermore, the field comp-

onents are all defined at a single location in the new

formulation.

Fig. 6 shows the convergence of the numerical results

with increasing number of iterations for b \Al = 4. It can

be seen that the new FD-TD formulation converges mc~re

rapidly and smoothly than Yee’s FD-TD method in term

of number of iterations. This is achieved at the expense of

increased computational expenditure since each iteration

with the new FD-TD formulation takes slightly mc)re
time. It was found that the total CPU time required for

both methods was almost the same for the same required

accuracy. Even in this case, the new formulation provides

better field resolution due to the fact that the field

components are evaluated in a larger number of positicms

in space. In addition, as the number of iterations in-
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Fig. 6. Normalized cutoff frequency in the rectangular finned waveguide obtained for increasing number of Iterations,

creases, the new algorithm converges very smoothly to its

stable solution while Yee’s scheme displays some oscilla-

tory convergence. This can be explained by the fact men-

tioned earlier that in the new time-domain finite-dif-

ference formulation or the symmetrical condensed TLM

node model, the continuity of the tangential field compo-

nents across the interfaces of the cells and the energy

conservation within the cells are ensured.

V. CONCLUSION

In this paper, a new finite-difference time-domain for-

mulation for Maxwell’s equation, which is different from

that of Yee’s scheme presently used, has been proposed.

The new finite-difference equations form a kind of “con-

densed” model where both electric and magnetic field

components are defined at the cell centers and at mid-

points between adjacent cells. As a result, a better resolu-

tion and accuracy than Yee’s scheme for solving electro-

magnetic problems are expected. This has been verified

by comparing the two finite-difference formulations for

the 2D cases in computing the normalized cutoff fre-
quency of a finned waveguide. In addition, the exact

equivalence between the proposed finite-difference time-

domain formulation and the TLM condensed node model

has been demonstrated. In other words, the TLM algo-

rithm can be exactly formulated in finite-difference time-

domain forms and vice versa. However, in spite of their

equivalence, both algorithms retain their specific advan-

tages. For instance, the finite-difference formulation has

a simpler algorithm when constitutive parameters are

directly introduced. On the other hand, the TLM model

has certain advantages in the modelling of boundaries

and the partitioning of the computational domain using

Johns Matrix techniques. Further studies regarding the

properties of the new FD-TD scheme in the three-dimen-

sional case are in progress.
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